Electrical Engineering Technician

Select start date and campus

Close

Applying as a Canadian applicant

Domestic students should apply online or by phone at 1-888-892-2228.


Applying as an International applicant

International students should apply online. Note: not all programs are open to international students.
Close

Campus tours

Campus tours are one of the best ways to experience Conestoga. During this time, we are offering online guided tours to show you all Conestoga has to offer.

Book your tour

Virtual tours

If you can't make an on-campus tour or attend one of our events, the virtual tour is a great way to visit us.

View our Virtual tour

Courses - September 2022

Level 1

Course details

College Reading & Writing Skills
COMM1085

Description: This course introduces students to the reading, writing, and critical thinking skills needed for academic and workplace success. Students will analyse a variety of texts and apply the steps of planning, writing, and revising to produce writing that meets the expectations of selected audiences and purposes. The course prepares students for college-level writing tasks, research, and documentation by asking them to produce clear, informed, and purposeful documents relevant to both academic and professional contexts.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites:
  • CoRequisites:

Computer Applications
COMP1673

Description: This course is an introduction to various software packages used for word processing, spreadsheets and presentations. Various labs will form the basis for students to learn to write lab reports and produce a technical document complete with drawings, graphs, and tables. The reports will also emphasize the proper use of punctuation, grammar and style. A final oral presentation will be given by students describing a particular problem and the method of solution, complete with documentation.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites:
  • CoRequisites:

Conestoga 101
CON0101

Description: This self-directed course focuses on introducing new students to the supports, services, and opportunities available at Conestoga College. By the end of this course, students will understand the academic expectations of the Conestoga learning environment, as well as the supports available to ensure their academic success. Students will also be able to identify on-campus services that support their health and wellness, and explore ways to get actively involved in the Conestoga community through co-curricular learning opportunities.
  • Hours: 1
  • Credits: 0
  • Pre-Requisites:
  • CoRequisites:

Drawing I
DRWG1365

Description: This course is an introduction to computer aided drafting and design. Practical assignments will supplement the theory of other courses.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites:
  • CoRequisites:

Electrical Principles
EECE1520

Description: This is the first course in Electrical Principles. No electrical or electronics background is assumed. Topics include: basic atomic structure; electrical AC/DC voltage and current; Ohm's Law; resistors; series, parallel and complex circuits; power law; Kirchhoff's Laws; magnetism; inductance; capacitance; reactance and transformers. The course concludes with RL and RC circuits, impedance and power.
  • Hours: 70
  • Credits: 5
  • Pre-Requisites:
  • CoRequisites:

Electrical Skills I
EECE1545

Description: This project course is designed to introduce basic engineering practice, simple design, technical drawings and skills required in the industry. Topics in this practical course include: sketching; electrical drawings; identification of tools and components; soldering and de-soldering techniques; use of connection tools and will practice general safety.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites:
  • CoRequisites:

Introduction to Digital Electronics
ELEC1870

Description: This course begins with an introduction to the concepts of logic and analysis as used in problem solving. Topics covered include: number systems, logic gates, truth tables, Boolean algebra and logic simplification, combinational logic, logic functions with combinational circuits and bi-polar junction transistors.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites:
  • CoRequisites:

Electrical Measurement
INST1000

Description: This course introduces students to a wide variety of instruments that are used in both the electrical and electronic fields. Topics will include both Analog and Digital Voltmeters, Ohmmeters and Ammeters, as well as Grounds, Oscilloscopes and Signal Generators. How measurements are taken, accuracy of measurements, calibration and construction of the most commonly used pieces of test equipment.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites:
  • CoRequisites:

Mathematics I (Electrical)
MATH1880

Description:

This course is oriented towards the direct application of mathematical techniques to electrical and electronic fundamentals. The topics include algebraic manipulation, graphs, complex algebra and vectors, linear and quadratic equations, engineering and scientific notation.

  • Hours: 56
  • Credits: 4
  • Pre-Requisites:
  • CoRequisites:

Level 2

Course details

Drawing II
DRWG1415

Description: This course is a continuation of Drawing I and has more emphasize on 2D drawings and some 3D modelling. Practical assignments will supplement the theory of other courses.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites: DRWG1365
  • CoRequisites:

Electrical Fundamentals (Power)
EECE1140

Description:

This course introduces the analysis of both AC single phase and poly phase circuits. Topics include application of network theorems and computer aided tools on single phase and poly phase circuits to analyze and solve problems.

  • Hours: 70
  • Credits: 5
  • Pre-Requisites: EECE1520 AND MATH1880
  • CoRequisites: MATH1895

Electrical Skills II
EECE1455

Description: This project course is designed to introduce basic engineering practice, simple design, technical drawings and skills required in the industry. Topics in this practical course include: sketching; electrical drawings; documentation; soldering and de-soldering techniques; use of connection tools; working with relays, control and pilot devices; building and troubleshooting electronic circuits; and will practice general safety.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites: EECE1520 AND EECE1545 AND INST1000 AND MATH1880
  • CoRequisites:

Introduction To Instrumentation
INST1015

Description: This course introduces the student to a wide variety of instruments as used in the electrical, electronic and process control industries. The topics covered include: temperature sensors, strain gages, opto-electronic devices, proximity sensors, pressure, level, and flow measuring equipment. In addition there will be some topics on pneumatic type instruments.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE1520 AND INST1000
  • CoRequisites:

Mathematics II (Electrical)
MATH1895

Description: This is a continuation of Mathematics I and provides for a sound understanding and continued development of trigonometry, algebra, and graphing as related to Electrical.
  • Hours: 56
  • Credits: 4
  • Pre-Requisites: MATH1880
  • CoRequisites:

Magnetic Circuits
PHYS2010

Description: Magnetic Circuits introduces the student to the fundamental concepts of magnetism. Magnetic theory is established by investigating the properties of magnetic material and the interaction of currents and magnetic fields. Parallels are drawn between DC circuits and magnetic circuits with the introduction of reluctance, magneto-motive force, permeability, ampere-turns and hysteresis. Practical applications are made to electrical equipment and related control pieces.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites: EECE1520 AND MATH1880
  • CoRequisites:

Programming Principles
PROG1185

Description: This is a hands-on course that introduces the student to programming in C/C++. Topics covered in this course include: fundamentals of structured programming: data types, variables, input, output, flow control structures for decision making, loop control structures for repetition, functions and subroutines, arrays and string; best practices of algorithm design; engineering problem-solving using computer programming; and human-machine interface software.
  • Hours: 56
  • Credits: 4
  • Pre-Requisites:
  • CoRequisites:

Electives: General Education
Student must pass 1 Course(s), selected in the Student Portal from available course options

Level 3

Course details

Programmable Logic Controllers I
CNTR2180

Description: This course introduces the student to the use of modern manufacturing techniques that programmable controllers allow. In an industrial environment where automation is being applied, students will learn that programmable logic controllers can make work easier and safer while maintaining quality, efficiency and productivity.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE1140
  • CoRequisites:

Electrical Projects
EECE2070

Description: Electrical Projects is designed to give the student the skills and knowledge necessary to test and evaluate the operation of electronic controls, electrical wiring and electro‑mechanical equipment. The course employs manual skills already acquired and allows the student to develop testing and troubleshooting techniques on standard equipment. In addition, the student will learn to sketch and draw components; do soldering and perform standard lab practices common to this industry. Students will also learn to communicate technical information orally and to complete written reports, and material requisitions. As well, the student will be able to calculate voltages, currents, resistances and power; and measure conductor sizes, length and weights to assist in the testing of repairs to the equipment in question. All through the course, the student will make use of safety standards, electrical codes, and equipment pertinent to the project he/she is working on.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: DRWG1415 AND EECE1455
  • CoRequisites:

DC Test Floor Practice
EECE2100

Description: D.C. test floor practice is designed to provide the student with the skills and knowledge necessary to investigate the operating characteristics of D.C. machinery, circuits and associated apparatus and to compare results with other tests. Students will be required to use skills and knowledge obtained in Direct Current Theory to set up, connect and test D.C. equipment.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE1140 AND EECE1450 OR EECE1455 AND MATH1895 AND PHYS2010
  • CoRequisites: EECE2130

DC Motor/Generator And Control Theory
EECE2130

Description:

This course is designed to introduce the student to the theory of operation and control of various DC motors. Various types of generators and motors such as shunt, series and compound are studied with particular attention to load testing, efficiency, speed, winding configuration, and connections. Machine control applications introduce the student to voltage regulation, motor starting techniques and various control devices.

  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE1140 AND MATH1895 AND PHYS2010
  • CoRequisites: EECE2100

Industrial Power Electronics
EECE2140

Description:

This course provides the student with basic troubleshooting techniques for application to industrial power electronic apparatus. The student is given an understanding of the operating principles of a variety of circuits and systems including DC and AC motor drives. The student will also be able to select appropriate test equipment and to locate and repair faults in electronic equipment, components and common systems.

  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE1140 AND EECE1450 OR EECE1455
  • CoRequisites:

Introduction to Renewable Energy
EECE2200

Description: This course is intended to introduce the student to photovoltaic and battery technologies. The student will explore both the theoretical and practical applications of photovoltaic systems. The student will learn the necessary calculations to size a photovoltaic system and incorporate the proper battery sizes for that system.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites:
  • CoRequisites:

Renewable Energy Practice
EECE2510

Description:

The students will learn how to design a solar energy system, by applying necessary calculations to size, solar arrays and batteries required. They will also learn the necessary Code Rules that apply to these installations. Sun charts will be needed to determine battery numbers, total sun hours and proper angles of the system components for a given area. The students will also test Photovoltaic cells by connecting components, meters and loads under artificial and real sun light to determine characteristics, efficiency and fill factors of the cells.

  • Hours: 14
  • Credits: 1
  • Pre-Requisites:
  • CoRequisites:

Electives: General Education
Student must pass 1 Course(s), selected in the Student Portal from available course options

Level 4

Course details

Programmable Logic Controllers II
CNTR2045

Description:

This course is designed to elevate the student's previous knowledge of PLCs to allow for sequence controls and data manipulation. The learner will achieve this by applying higher levels of programming instructions and data transfer commands. The various methods of interconnecting PLCs will also be explored to aid in the understanding of the manufacturing process.

  • Hours: 42
  • Credits: 3
  • Pre-Requisites: CNTR2180
  • CoRequisites:

Electrical Code
CODE2040

Description: This course is designed to introduce the student to the Electrical Safety Code. The student will learn to apply the electrical code to various electrical installations.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites:
  • CoRequisites:

Power Transformers
EECE2115

Description:

This is the first course in transformers for electrical technician/technologist. The student will study the basic operation of a transformer; determine the polarity of the windings; and derive current and voltage relationships and the transformer equation. The electrical representations of the ideal and real transformers are investigated which include the determination of the no load loss and load loss of the transformer. Both single phase and three phase transformer arrangements will be studied. The student will also look at the basic construction of the transformer and various components used with the transformer.

  • Hours: 70
  • Credits: 5
  • Pre-Requisites: EECE1140 AND MATH1895 AND PHYS2010
  • CoRequisites:

Graphic Interface to PLCs
EECE2300

Description: This project course is designed to give the student the knowledge to connect/wire a PLC (Programmable Logic Controllers), HMI (Human Machine Interface) and peripheral devices (such as output/input cards, pneumatic cylinders, push buttons, sensors, motors, motor drives, etc). Some basic HMI interface programming will be taught as well. Introducing automation modules and electrical schematics is also part of the course content.
  • Hours: 28
  • Credits: 2
  • Pre-Requisites: CNTR2180 AND EECE2070
  • CoRequisites:

AC Test Floor Practice
EECE2480

Description: AC Test Floor Practice is designed to provide the student with the skills and knowledge necessary to prepare test reports and compare operating characteristics of AC machinery, circuits and associated apparatus. Normal and changed conditions affecting efficiency, current and voltage, power, power factor, and frequency are investigated in both large and small machinery and apparatus, which as closely as possible, produce conditions found in industry. Students will be required to use skills and knowledge obtained in Alternating Current Theory to set up, connect, control and test A.C. equipment.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE2100 AND EECE2130
  • CoRequisites: EECE2490

AC Motor/Alternator And Control Theory
EECE2490

Description: This course is designed to introduce the student to the theory of operation and control of various AC motors and alternators. Three-phase and single-phase synchronous and induction machines are studied with respect to operating characteristics and physical configurations. Various control devices are examined with their respective machines.
  • Hours: 42
  • Credits: 3
  • Pre-Requisites: EECE2130
  • CoRequisites: EECE2480

Safety Standards for Electrical Systems
EECE2500

Description:

This course informs the student of the need to be aware of workplace standards. They will learn how machines are made safer to reduce liability and improve productivity. Using a risk assessment will enhance the reasons why safeguarding requirements and techniques are utilized in today’s manufacturing industries.

  • Hours: 14
  • Credits: 1
  • Pre-Requisites:
  • CoRequisites:

Instrumentation for Electrical Systems
INST2010

Description: This course introduces the student to the application of various types of monitoring and control devices as used in the electrical industry. PID controllers used for motor, temperature and pressure control are among the topics covered. Various topics in Fibre Optics are included.
  • Hours: 56
  • Credits: 4
  • Pre-Requisites: EECE2140 AND INST1015
  • CoRequisites:

Electives: General Education
Student must pass 1 Course(s), selected in the Student Portal from available course options

Program outcomes

  1. Interpret and produce electrical and electronics drawings including other related documents and graphics.
  2. Analyze and solve routine technical problems related to electrical systems by applying mathematics and science principles.
  3. Use, verify, and maintain instrumentation equipment and systems.
  4. Assemble, test, modify and maintain electrical circuits and equipment to fulfill requirements and specifications under the supervision of a qualified person.
  5. Install and troubleshoot static and rotating electrical machines and associated control systems under the supervision of a qualified person.
  6. Verify acceptable functionality and apply troubleshooting techniques for electrical and electronic circuits, components, equipment, and systems under the supervision of a qualified person.
  7. Analyze, assemble and troubleshoot control systems under the supervision of a qualified person.
  8. Use computer skills and tools to solve routine electrical related problems.
  9. Assist in creating and conducting quality assurance procedures under the supervision of a qualified person.
  10. Prepare and maintain records and documentation systems.
  11. Install, test and troubleshoot telecommunication systems under the supervision of a qualified person.
  12. Apply health and safety standards and best practices to workplaces.
  13. Perform tasks in accordance with relevant legislation, policies, procedures, standards, regulations, and ethical principles.
  14. Configure installation and apply electrical cabling requirements and system grounding and bonding requirements for a variety of applications under the supervision of a qualified person.
  15. Assist in commissioning, testing and troubleshooting electrical power systems under the supervision of a qualified person.
  16. Select electrical equipment, systems and components to fulfill the requirements and specifications under the supervision of a qualified person.
  17. Apply project management principles to assist in the implementation of projects.